
kaPoW Plugins: Protecting Web Applications Using
Reputation-based Proof-of-Work

Tien Le
Portland State University
letien@cs.pdx.edu

Akshay Dua
Portland State University
akshay@cs.pdx.edu

Wu-chang Feng
Portland State University

wuchang@cs.pdx.edu

ABSTRACT
Comment spam is a fact of life if you have a blog or forum.
Tools like Akismet and CAPTCHA help prevent spam in
applications like WordPress or phpBB. However, they are
not devoid of shortcomings. CAPTCHAs are getting easier
to solve by automated adversaries like bots and pose us-
ability issues. Akismet strives to detect spam, but can’t do
much to reduce it. This paper presents the kaPoW plugin
and reputation service that can complement existing anti-
spam tools. kaPoW creates disincentives for sending spam
by slowing down spammers. It uses a web-based proof-of-
work approach wherein a client is given a computational puz-
zle to solve before accessing a service (e.g. comment post-
ing). The idea is to set puzzle difficulties based on a client’s
reputation, thereby, issuing “harder” puzzles to spammers.
The more time spammers solve puzzles, the less time they
have to send spam. Unlike CAPTCHAs, kaPoW requires
no additional user interaction since all the puzzles are is-
sued and solved in software. kaPoW can be used by any
web application that supports an extension framework (e.g.
plugins) and is concerned about spam.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Security

1. INTRODUCTION
Internet spam is a problem that refuses to go away. Al-

though the amount of email spam is reducing (≈ 70.5% in
Jan 2012 from 92.2% in Aug 2010), the spam on social net-
work sites is edging up. In spite of Facebook’s best efforts,
approximately 4 million users receive spam from around
600,000 new or hijacked accounts each day [8, 14]. What’s
worse are the response rates from social spam: in Jan 2010,
an estimated 0.13% of all twitter spam — almost two orders
of magnitude higher than email spam [12] — was clicked
by around 1.6 million unsuspecting users [9]. All this spam
costs businesses $20.5 billion annually in decreased produc-
tivity and technical expenses, and is projected to rise to $198
billion in the next four years [19].

The most common approaches to combatting spam involve
using spam filters, heuristics or user reports for identifying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WebQuality ’12, April 16, 2012, Lyon, France
Copyright 2012 ACM 978-1-4503-1237-0 ...$10.00.

accounts that send spam [24], and CAPTCHAS that pre-
vent automatic creation of malicious accounts [25]. Spam
filters are effective at “hiding” spam, but don’t do much to
reduce it. Heuristics can be easy to circumvent [5], while
investigating reported accounts can be expensive and most
often too late [9]. CAPTCHAs are getting increasingly easy
and cost-effective to solve due to OCR techniques, tricking
infected victims into manually solving captchas, reusing ses-
sion IDs of known CAPTCHAs, and farming out CAPTCHA
solving to cheap human laborers [5, 7, 11, 10]. Moreover,
CAPTCHAs can’t prevent spam from being sent from hi-
jacked accounts, or be used too frequently (e.g before send-
ing each email) due to usability limitations [26].

This paper presents kaPoW plugins for web applications
like Wordpress, phpBB etc. kaPoW is a Proof-of-Work based
approach that integrates with several widely used web appli-
cations and can complement existing anti-spam techniques
(e.g. CAPTCHAs, spam filters). The plugins use an effi-
cient construction [7] of the cryptographic time-lock algo-
rithm [18] to construct puzzles with client-specific difficul-
ties. Difficulties are determined using the kaPoW reputation
service. Higher the difficulty, the longer a puzzle takes to
solve. The main contributions of this work are:

• A plugin-based architecture that allows generic web
applications to use kaPoW

• A fine-grained (per message) approach to reducing spam
without compromising usability

• An implementation of the kaPoW Plugins for Word-
press [2] and phpBB [1], as well as the kaPoW reputa-
tion service.

2. BACKGROUND
We now present a brief background on client puzzles and

the kaPoW project.

2.1 Client Puzzles
Proof-of-work systems generally consist of three distinct

parts: the issuer, the solver, and the verifier. The issuer
issues the puzzle to the solver, which solves them and sends
the solution to the verifier. kaPoW plugins use the modified
time-lock puzzle algorithm introduced by Feng and Kaiser
[7]. The puzzle is based on repeated squaring, a sequential
process that forces the client to compute in a tight loop for
an amount of time that is precisely controlled by the issuer.

At first, the issuer generates p and q, two large prime
numbers and calculates the modulus n = p × q. Then, it

Figure 1: kaPoW model

generates a difficulty t that determines the amount of work
a client potentially performs. Lastly, it efficiently generates
a nonce a [7] and sends (a, t, n) to the client. The client

must then return an answer A such that A = a2
t

modn.
The verifier can check that A is correct by performing a
short-cut computation φ = (p − 1) × (q − 1), r = 2tmodφ,
and A′ = ar mod n. If A matches A′, then the client has
performed the computation accurately.

The modified time-lock puzzle was designed to be quick
to generate and verify, be non-parallelizable and have de-
terministic run-times, and be configurable with fine-grained
puzzle difficulties. The aforementioned characteristics were
needed for the system to scale, to deterministically verify
puzzle solutions, and appropriately match the amount of
work a client performs to the level of protection the appli-
cation needs.

2.2 kaPoW
The first prototype of the kaPoW project was kaPoW

Webmail [7]. It introduced a more-efficient construction of
the time-lock algorithm that is used in our system as well
(Section 2.1). In addition, kaPoW Webmail used a compre-
hensive set of metrics for determining puzzle difficulties that
provided significant disincentives for spammers. The system
was designed to be deployed without modifications to either
the client or server software.

3. ARCHITECTURE
kaPoW plugins attempt to address some of kaPoW Web-

mail’s [7] drawbacks. Since kaPoW webmail is a stand-alone
system, it cannot work with other web applications. Also,
its own local reputation service cannot leverage adversary
behaviors across multiple applications. kaPoW Plugins em-
ploy the same time-lock puzzle, but are diversely applica-
ble and use a centralized reputation service for maintaining
cross-application reputations.

As shown in Figure 1, each web application must install
a corresponding plugin to use the kaPoW service. Like any
proof-of-work system, the kaPoW plugin consists of an is-
suer, solver, and verifier. The puzzle issuer and verifier
make up the server-side component of the kaPoW plugin.
When a client submits a message (e.g. form, comment)
to the web application, the issuer forwards that content to

the centralized reputation service. The returned reputation
score is then combined with another local score to compute
the final puzzle difficulty (Section 4). The issuer then con-
structs the puzzle and sends it to the client-side component
or solver. The solver is responsible for receiving, solving,
and returning the puzzle to the verifier. If verification suc-
ceeds, the client’s content is handled by the web application,
otherwise it is placed in a spam queue.

The central reputation service combines intelligence on
spam attacks across multiple kaPoW plugins installed on a
diverse set of web applications. For example, a spammer
may target multiple kaPoW-enabled web applications in a
short period of time. The individual applications may not
see this as an attack, but the centralized reputation service
with its global view may detect the attack. It can then
blacklist the spammer’s IP address and flag the content as
spam.

4. PUZZLE DIFFICULTY
No proof-of-work system can be effective unless it can is-

sue puzzles of different difficulties [13]. Difficulties are set
based on reputation scores from, 1) kaPoW’s reputation
service, and 2) a per-application local policy. Local scores
are necessary for incorporating reputation information from
application-specific characteristics. For example, age of user
accounts: a web application may consider a long-time client
more trustworthy than a new one. More specifically, kaPoW
supports local reputation scores based on age of account,
locally defined spam words in a client’s message, and black-
listed IP addresses or usernames. A client’s reputation score
is computed as

score = S1 + S2 + . . .+ Sm (1)

where Si is a binary metric such as “does the IP address or
username of the client appear on any blacklists?”.

Once a reputation score is generated, it is translated to a
puzzle difficulty using the score-to-difficulty equation from
kaPoW webmail [7]. Namely, the puzzle difficulty

t = α× scorem (2)

where m is the number of reputation metrics, and α is a
“computational power” factor. α should be set smaller for
computationally limited devices like smart phones and larger

for more capable ones like PCs. Currently, the system uses
an empirically determined α = 20 for all devices. We plan
to address the selection of α in the future. The metrics
are described in more detail in Section 5.2. Unlike the
thumbs-up/thumbs-down approach of spam detection and
CAPTCHs, the proof-of-work model considers all clients to
be adversaries, but with varying degrees of maliciousness.
Later, based on a client’s current and past behavior, a puz-
zle of appropriate difficulty is issued.

5. IMPLEMENTATION
This section describes the implementation of the kaPoW

Plugin, and reputation service 1.

5.1 kaPoW Plugin
The kaPoW plugin is implemented in PHP and delivers a

JavaScript solver to the client for solving the modified time-
lock puzzle. The solver is only 9KB and is called via AJAX.
AJAX allows puzzle solving to occur in the background.
This minimizes changes to the original web application user
interface. Figure 2 shows, how the puzzle is received and
computed in the background after the user clicks the “Post
Comment” button. In the unlikely event that JavaScript
is not enabled on the client’s browser, the submitted con-
tent is placed into the web application moderator’s queue
for further investigation.

Figure 2: The kaPoW plugin integrated into the
Wordpress message posting interface

We have developed kaPoW plugins for Wordpress and ph-
pBB. The Wordpress plugin currently integrates with the
“New Comment” and “Account Register” pages. As men-
tioned before, the plugin can complement other approaches
like CAPTCHA. The kaPoW phpBB plugin is implemented

1Available at http://kapow.cs.pdx.edu/kapow/

as an AutoMOD [16] and works on bulletin boards with
jQuery support. The plugin can then integrate client puz-
zles into all message posting and editing pages.

5.2 kaPoW Reputation Service
The kaPoW reputation service runs on an Intel Xeon E5620

with 24GB RAM running RedHat Enterprise Linux. Its
main job is to generate scores based on client information
and content received from web applications. It also offers
web-based, real-time and historical reporting on identified
spam attacks. The client information and content received
from the application is first analyzed by several popular anti-
spam services (SpamAssassin [20], kaPoW[7], Spamhaus[22],
SpamCop[21], Project HoneyPot[17], Dshield[6], Akismet[4],
StopForumSpam[23]). Then, the kaPoW reputation ser-
vice will check the URLs within the message, the username
(if one exists), and the client’s IP address against multiple
blacklists. Each time a check returns true, the reputation
score is increased by 1. The maximum reputation score is
7. The final score is then sent back to the web applications
in XML format. The scoring algorithm uses the following
binary metrics to generate the spam score:

• Spam Content: do anti-spam tools consider the mes-
sage spam?

• Spam Words: does the message contain any words
present in the local spam-word list?

• Blacklists: does the IP address or username of the
client appear on any blacklists?

• Location: is the geographic location of the IP address
of the client outside 500 miles of their usual region of
access? Unfortunately, this has the adverse effect of
lowering the reputation of legitimate travelers. How-
ever, we hope to address this issue in the near future.

• Time: does the current time of day fall outside an 8-
hour window during the day that users typically send
messages?

• Usage: has the user account sent a message within the
last 5 minutes?

• Account age: is it a new account? Spammers generally
create multiple new accounts to evade IP reputation
systems [7]. These accounts are usually utilized for
a short period of time before being abandoned. New
accounts are penalized up to a threshold number of
message postings (currently set to 5) before being con-
sidered “old”.

Some of the metrics above are determined locally, where
as others are determined remotely at the reputation ser-
vice. The respective metrics are combined to generate a
local and remote score. The local (scorelocal) and remote
score (scorerep) are then used to generate the final reputa-
tion score:

score = scorelocal + scorerep (3)

The final score is used to set the puzzle difficulty as described
by Equation 2.

6. DISCUSSION
Bots that do not execute JavaScript will be unable to

post spam because they will fail to execute the issued puz-
zle. Bots that are capable of executing JavaScript (e.g.

Googlebot) [15] will be issued harder puzzles than “normal”
users, and that is exactly the intention of the kaPoW sys-
tem. The computational effort spent solving puzzles will
slow the rate at which the bots can send spam. Similarly,
browsers used by hired ”spam” laborers are forced to solve
time-lock puzzles, even if they can overcome CAPTCHAs
easily. Thus, kaPoW can nicely complement a CAPTCHA-
based approach. kaPoW also does not undermine existing
anti-spam tools like Akismet or SpamAssassin, since it uses
those services for computing client reputations (see Section
5.2). We believe that the combination of existing anti-spam
tools and kaPoW is an effective defense.

In the current implementation, the kaPoW plugin does not
issue puzzles based on the capabilities of the client platform.
Thus, cell phones would unfairly be issued puzzles meant
for PC-class machines. It has been shown that memory-
bound puzzles [3] are more fair than CPU-bound ones (e.g.
time-lock puzzle). However, we leave this investigation for
future work. Additionally, we plan to rigorously evaluate
the kaPoW Plugin system and improve the cross-application
reputation scores.

7. CONCLUSION
Current anti-spam efforts have several limitations: Ak-

ismet and other spam filters can determine if comments are
spam or not but cannot reduce spam. Additionally, filters
can have false positives and negatives. CAPTCHAs are get-
ting easier to solve by automated adversaries (e.g. bots) and
pose several usability issues. The KaPoW plugin and repu-
tation service addresses these limitations using an efficient
construction of time-lock puzzles and a comprehensive set of
metrics to drive puzzle difficulties. kaPoW is an open-source
project under the GPLv2 License. The source code plugins
for Wordpress and phpBB are available for download at the
kaPoW main website.

This material is based upon work supported by the National

Science Foundation under Grant No. CNS-1017034. Any opin-

ions, findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

8. REFERENCES
[1] phpBB: Creating Communites Worldwide.

http://www.phpbb.org.

[2] WordPress: Blog Tool and Publishing Platform.
http://wordpress.org.

[3] M. Abadi, M. Burrows, M. Manasse, and T. Wobber.
Moderately Hard, Memory-bound Functions. In
NDSS, February 2003.

[4] Akismet. Comment spam prevention for your blog.
http://akismet.com.

[5] Y. Boshmaf, I. Muslukhov, K. Beznosov, and
M. Ripeanu. The socialbot network: When bots
socialize for fame and money. Dec 2011.

[6] DShield.org. Distributed Intrusion Detection System.
http://www.dshield.org.

[7] W. Feng and E. Kaiser. kapow webmail: Effective
disincentives against spam. Proc. of 7th CEAS, 2010.

[8] Geoffrey A. Fowler, Shayndi Raice, Amir Efrati.
Facebook, Twitter battle ’social’ spam.
http://www.theaustralian.com.au/business/

wall-street-journal/

facebook-twitter-battle-social-spam/

story-fnay3ubk-1226237108998, Jan 2012.

[9] C. Grier, K. Thomas, V. Paxson, and M. Zhang.
@spam: the underground on 140 characters or less. In
Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 27–37,
New York, NY, USA, 2010. ACM.

[10] E. Kaiser and W. Feng. mod kapow: Protecting the
web with transparent proof-of-work. In INFOCOM
Workshops 2008, IEEE, pages 1–6. IEEE, 2008.

[11] E. Kaiser and W. Feng. Helping ticketmaster:
Changing the economics of ticket robots with
geographic proof-of-work. In INFOCOM IEEE
Conference on Computer Communications Workshops,
2010, pages 1–6. IEEE, 2010.

[12] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. Voelker, V. Paxson, and S. Savage. Spamalytics:
An empirical analysis of spam marketing conversion.
In Proceedings of the 15th ACM conference on
Computer and communications security, pages 3–14.
ACM, 2008.

[13] D. Liu and L. Camp. Proof of work can work. In Fifth
Workshop on the Economics of Information Security,
2006.

[14] Mark Risher. Social Spam and Abuse — Annual Trend
Review. http://blog.impermium.com/2012/01/13/
social-spam-and-abuse-the-year-in-review/, Jan
2012.

[15] P. McKenzie. Detecting Bots with Javascript.
http://www.kalzumeus.com/2010/06/07/

detecting-bots-in-javascrip/.

[16] phpBB.com. phpBB AutoMOD.
http://www.phpbb.com/mods/automod/.

[17] Project Honey Pot. Http:BL.
http://www.projecthoneypot.org/httpbl.php.

[18] R. Rivest, A. Shamir, and D. Wagner. Time-lock
puzzles and timed-release Crypto. Technical report,
MIT, March 1996. MIT/LCS/TR-684.

[19] SPAM LAWS. Spam Statistics and Facts.
http://www.spamlaws.com/spam-stats.html, 2011.

[20] SpamAssassin. The spam filtering service.
http://spamassassin.apache.org.

[21] spamcop.net. SpamCop. http://www.spamcop.net/.

[22] Spamhaus Project Ltd. Spamhaus Project.
http://spamhaus.org/.

[23] Stop Forum Spam. A database of known forum and
blog spam. http://stopforumspam.com.

[24] Twitter. The Twitter Rules. http://support.
twitter.com/articles/18311-the-twitter-rules,
Jan 2012.

[25] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham,
and M. Blum. recaptcha: Human-based character
recognition via web security measures. Science,
321(5895):1465, 2008.

[26] J. Yan and A. El Ahmad. Usability of captchas or
usability issues in captcha design. In Proceedings of
the 4th symposium on Usable privacy and security,
pages 44–52. ACM, 2008.

