
Identifying Spam in the iOS App Store

Rishi Chandy
Carnegie Mellon University

rishic@cs.cmu.edu

Haijie Gu
Carnegie Mellon University
haijieg@cs.cmu.edu

ABSTRACT
Popular apps on the Apple iOS App Store can generate mil-
lions of dollars in profit and collect valuable personal user
information. Fraudulent reviews could deceive users into
downloading potentially harmful spam apps or unfairly ig-
noring apps that are victims of review spam. Thus, auto-
matically identifying spam in the App Store is an impor-
tant problem. This paper aims to introduce and character-
ize novel datasets acquired through crawling the iOS App
Store, compare a baseline Decision Tree model with a novel
Latent Class graphical model for classification of app spam,
and analyze preliminary results for clustering reviews.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; H.3.5 [Online
Information Services]: Web-based services

General Terms
Experimentation, Measurement

Keywords
review spam, opinion spam, mobile apps, fraud detection

1. INTRODUCTION
Launched in 2008, the iOS App Store now lists over 500,000

apps for Apple’s iPhone and iPad mobile devices [1]. The
App Store contains both free and paid apps, with Apple tak-
ing 30% of revenue from app purchases. Since Apple’s mo-
bile devices only support apps downloaded from this store,
application developers have access to a large audience of po-
tential customers. Indeed, a popular app, such as “Angry
Birds,” can generate millions of dollars.

Developers of spam apps (malicious developers) are primar-
ily interested in gaining monetary profit or leaching valuable
user data, such as address book contacts. Popular, seem-
ingly legitimate apps can leak user data quietly [2, 4], so it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WebQuality ’12, April 16, 2012, Lyon, France
Copyright 2012 ACM 978-1-4503-1237-0 ...$10.00.

Figure 1: App and developer features from the Labeled E&L
dataset used for learning the baseline Decision Tree

App Features
App ID

Developer ID
Price

Category ID
Release Date

Current Version

Developer Features
Developer ID

Number of Apps
Avg App Rating

Avg Number of App Versions
Avg Review Helpfulness
Proportion of Free Apps

is feasible that spam apps would attempt to do the same.

In the App Store, each app has its own webpage, which dis-
plays app price, screenshots, description, ratings and text
reviews left by users who downloaded the app, and related
metadata. Ratings are integer “stars” in the range 1-5. Sim-
ilar to other online shopping platforms, positive reviews are
crucial for convincing potential customers to purchase the
app. Fraudulent reviews could deceive users into download-
ing potentially harmful spam apps or unfairly ignoring apps
that are victims of review spam.

A malicious developer could post spam reviews by using
several throwaway iTunes user accounts i.e. “sockpuppets”.
Apple has attempted to decrease the frequency of spam by
requiring users to purchase and download an app before be-
ing able to review it. However, sockpuppet user accounts
can still be created using iTunes Gift Cards, and the poten-
tial for profit and stolen user data could justify the cost.

For malicious developers, spamming the App Store can be
beneficial and is not difficult, so automatically identifying
spam in the App Store is an important problem. The goals
of this paper are to classify app spam in a supervised set-
ting with limited labeled data, and to cluster reviews in
an unsupervised setting. Our main contributions are the
introduction and characterization of novel iOS App Store
datasets, comparison of a Decision Tree model and novel
Latent Class graphical model for classification of app spam,
and preliminary results on clustering reviews with analysis.

1.1 Related Work
One of the first modern data mining approaches to de-

tecting opinion spam is presented in [6]. They studied an
Amazon review data set, and categorized opinion spam into
three types: untruthful reviews, brand-only reviews, and

Node Features CPD
fu user avg rating, user num rev conditional Gaussian
fa app avg rating, app num rev conditional Gaussian
fr I(stars <= 2), I(star = 3), I(stars >= 4) NA
fd dev num app, deb avg rating, conditional Gaussian

Ia, Id, Iu, Ir binary class indicator CPT

Table 2: Features and CPD

non-reviews. Because brand-only reviews and non-reviews
are easily recognizable by humans, the problem of detect-
ing reviews of those types can be transformed into a super-
vised classification problem. However, untruthful reviews
are much harder to distinguish by inspection and hence
manually creating labels becomes infeasible. Their approach
used duplicate content as the main indicator for detecting
untruthful reviews, since they found that untruthful reviews
are likely to be reposted verbatim repeatedly.

Subsequent efforts focused on feature engineering and nat-
ural language processing. Researchers used text features to
examine reviews in domains such as movies and products.
A classifier for deceptive opinion spam in TripAdvisor was
developed in [9], emphasizing psycholinguistic methods and
text analysis. They also confirmed that deceptive opinion
spam is difficult for humans to identify reliably.

Table 1: Sizes of “Top Apps” (TA), “Entertainment &
Lifestyle” (E&L), and “Labeled E&L” datasets.

TA E&L Labeled E&L
Apps 691 2,399 114

Reviews 6,282,626 37,035 33,134
Users 4,416,823 36,705 32,932

Developers 412 2,002 114

Instead of finding item or review spam, [7] attempted to
identify the reviewers who spread spam by looking at suspi-
cious rating behavior. Their approach was based on heuristic
models of review patterns. In addition, they also found that
spam can significantly affect product ratings.

The techniques based on a review graph developed in [10]
sought to avoid text features entirely, while accounting for
the interaction among reviews, reviewers, and the review
subjects (online stores) in a ResellerRatings dataset. Their
iterative algorithm computed scores for their definitions of
reviewer trustiness, store reliability, and review honesty.

A benign technique to increase app downloads was explored
in [5], which found that Sunday evening is the best time to
release a new game due to app usage patterns. The validator
implemented in [4] tried to identify a subset of spam apps,
those that leak private information, by analyzing the app
executable.

2. DATASETS
The datasets consist of all reviews for selected apps crawled

from the Apple iOS App Store in 2012. From the review
data, we computed metadata for apps, developers, and users
who post reviews. We obtained two datasets: the “Top

Apps”(TA) dataset containing reviews and metadata for the
most popular iPhone and iPad apps according to Apple’s
leaderboards, and the “Entertainment & Lifestyle” (E&L)
dataset containing reviews and metadata for all iPhone and
iPad apps in the Entertainment and Lifestyle categories. In
addition, we created a third dataset, “Labeled E&L”, which
contains a randomly chosen subset of apps from “E&L” hav-
ing more than twenty reviews with app spam binary la-
bels acquired through manual inspection. The size of each
dataset is shown in Table 1.

Figure 2 shows CCDFs for the TA and E&L datasets. In
Figure 2a, we observe that the CCDFs go flat at integer rat-
ing values, with noticeable drops immediately before these
values. As expected, the TA CCDF remains higher than the
E&L CCDF at all rating levels in this plot, with the differ-
ence increasing with rating. This is because the TA dataset
contains many of the “best” apps in the entire store, while
the E&L dataset simply contains all apps from two cate-
gories. Also, the drop near 4.5 in the TA CCDF (circled in
red) indicates that many users would find an intermediate
rating between 4 and 5 useful for delineating the very best
apps. Figure 2b confirms this near the 4.5 rating level and
also shows how the “best” apps differ from the rest.

fufa

fd

Id

Ia Iu

Ir

fr

Saturday, February 18, 2012

Figure 3: Latent class model for review, user, app, and de-
veloper. Squares represent discrete variables and circles rep-
resent continuous variables. Shaded nodes are observed.

3. METHODS & RESULTS
As a baseline method to classify app spam, a pruned De-

cision Tree was trained on app and developer features from
the Labeled E&L dataset shown in Figure 1.

In addition to the decision tree, we propose a simple latent

Figure 2: CCDFs from the E&L (blue) and TA (green) datasets. Particularly interesting regions are circled in red.

(a) CCDF for users’ average rating

1 2 3 4 5

0.75

1

Avg Rating per User

Lo
g

C
C

D
F

(b) CCDF for apps’ average rating

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg Rating per App

C
C

D
F

class model to capture the relationship among the review,
app, user, and developer. Figure 3 shows the structure of
the graphical model. For each entity of interest, we assign it
a feature node and a latent node which represents the latent
class. The latent class model assumes that the feature is
generated from the unobserved class, and is independent of
other nodes given the class. Furthermore, we assume that
the developer only directly affects the app. All latent class
variables in this model are chosen to be binary. Ia indicates
good or bad apps, Id indicates good or bad developers, Iu
indicates normal or malicious users, and Ir indicates truth-
ful or spam reviews. Table 2 summarizes the features and
the conditional probability model at each node.

For simplicity and interpretability, we choose the two most
common used features for each observed node. We choose
Linear Gaussian to model the conditional probability of a
feature node given its latent class. We also simplify the
review feature to be a class indicator of high, middle and
low. Hence, it is convenient for us to put priors on the CPT
based on heuristics such as if conditioning on a dishonest
user, a high quality app, and a low review, the review is
more likely to be spam.

P (Iu) P (Id) P (Ia|Id = 0) P (Ia|Id = 1)
0 0.12 0.13 0.91 0.16
1 0.88 0.87 0.09 0.84

Figure 4: Learned parameters on latent nodes. The first
column contains the value of the variable.

3.1 Supervised Results
In the supervised setting with labels on apps, we treat Ia

as observed during training, and as unobserved during classi-
fication on the test set. The Labeled E&L dataset was split
randomly 50/50 between the training and test data. The
baseline Decision Tree achieves 41.4% classification error on
testing, with false positive rate 35.7% and false negative rate
46.7%. On this dataset our Latent Class model achieves
26.4% classification error on testing with false positive rate
6.3% and false negative rate 40.9%.

3.2 Unsupervised Results
The unsupervised learning is run on the E&L dataset.

The goal is to cluster reviews using the latent node Ir. We

Id µ(fd) σ2(fd)
0 (2.5, 1.5) (0.6, 0.7)
1 (4.2, 1) (0.01, 0.18)

(a) Parameters of fd|Id
Ia µ(fa) σ2(fa)
0 (3.3, 71) (1.2, 6701)
1 (4.2, 432) (0.01, 90500)

(b) Parameters of fa|Ia
Iu µ(fu) σ2(fu)
0 (3.9, 1) (0.01, 2.13)
1 (4.0, 1.5) (0.51, 1.47)

(c) Parameters of fu|Iu

Figure 5: Learned parameters on feature nodes. First col-
umn is the value of parent node. Figure 5a shows the pa-
rameters of the (avg rating, num reviews) pair, while Fig-
ures 5b and 5c show the parameters of the (avg rating,
num apps) pair. We restrict the covariance matrix to be
diagonal during the learning.

start with a uniform prior for Ia, Id, Iu. We set a prior
on P (Ir|Ia, Iu, fr) to encode common beliefs on a review’s
truthfulness based on user’s honesty, review’s rating, and
app’s quality. We run Expectation Maximization [3] for 6
iterations with a Junction Tree inference algorithm provided
by the Bayesian Network Toolbox (BNT) [8]. Note that, al-
though our goal is to cluster spam reviews, having other
latent nodes in the model provides a clustering on the users,
apps, and developers as a free byproduct.

Figures 4 and 5 show the parameters learned from EM. In
Figures 5a and 5b, the conditional mean of average rating
of apps and developers agrees with the intuition that higher
quality apps and developers receive higher ratings. Apps
from class 1 (good quality) receive more reviews than apps
from class 0, and the variance is much higher in class 1.
However, we notice that the number of apps feature for
developer is similar for both classes, because most of the
developers have only 1 or 2 apps in this dataset. Also, the
parameters of user features are similar for both classes be-
cause most of the users only posted one review. Therefore
average rating of users does not provide enough information
for clustering users. The marginal probability of latent class
in Figure 4 shows that the prior belief on users, apps, and

Figure 6: Plots for marginal probability of latent nodes Ir, Id, Ia. Each point corresponds to a sample record, and the axises
are the marginal probability of the corresponding latent class.

(a) Marginal of Ir

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0

0.2

0.4

0.6

0.8

Pr(Ir=0)

P
r
(
I
r
=

1
)

(b) Marginal of Id

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Pr(Id = 0)

P
r
(
I
d

=
1

)

(c) Marginal of Ia

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Pr(Ia = 0)

P
r
(
I
a

=

1
)

developers is heavily favored toward 1 (good class).
Figure 6 shows the projection of the data onto a 2D space

using the marginal probability of the latent variables Ir, Id
and Ia. In Figure 6a, reviews are well separated into 5
groups. One big cluster is centered around 50% which ex-
plains the ambiguous nature of some reviews. In Figure 6b,
most of the developers fall into two clusters on both ends,
and some developers are scattered in between. Figure 6c
shows that apps are strongly clustered on two ends. On
node Iu (not shown), however, most of the users fall into
the same cluster. Because almost all users in this dataset
have only one review, the user features by themselves are
not very effective for clustering users.

4. CONCLUSIONS
In this paper, we characterize novel iOS App Store datasets,

drawing observations from average rating CCDFs for apps
and users. We propose a latent class model with inter-
pretable structure and low complexity. On the labeled data
set, even though we use the simple Linear Gaussian parame-
terization, it still achieves significantly higher accuracy than
a baseline Decision Tree. On the unlabeled data set, it suc-
ceeds in clustering the apps and reviews into well separated
groups. Future work could explore extending our Latent
Class graphical model to adopt more features with a differ-
ent parametrization.

5. ACKNOWLEDGMENTS
This work is partially supported by the Information Net-

work Academic Research Center (INARC), part of the Net-
work Science Collaborative Technology Alliance (NS-CTA).
The authors would also like to thank Professors Christos
Faloutsos and Geoffrey Gordon for their mentorship and
support.

6. REFERENCES
[1] Apple. Apple iPhone 4S Announcement.

http://events.apple.com.edgesuite.net/

11piuhbvdlbkvoih10/event/index.html, 2011.

[2] Nick Bilton. Disruptions: So Many Apologies, So
Much Data Mining.
http://bits.blogs.nytimes.com/2012/02/12/

disruptions-so-many-apologies-so-much-data-mining,
2012.

[3] A.P. Dempster, N.M. Laird, and D.B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[4] Peter Gilbert, Byung-Gon Chun, Landon P Cox, and
Jaeyeon Jung. Vision: automated security validation
of mobile apps at app markets. In Proceedings of the
second international workshop on Mobile cloud
computing and services - MCS ’11, page 21, New
York, New York, USA, 2011. ACM Press.

[5] Niels Henze and Susanne Boll. Release your app on
Sunday eve: finding the best time to deploy apps. In
Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and
Services - MobileHCI ’11, page 581, New York, New
York, USA, 2011. ACM Press.

[6] Nitin Jindal and Bing Liu. Opinion spam and analysis.
In Proceedings of the international conference on Web
search and web data mining - WSDM ’08, page 219,
New York, New York, USA, 2008. ACM Press.

[7] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu,
and Hady Wirawan Lauw. Detecting product review
spammers using rating behaviors. In Proceedings of the
19th ACM international conference on Information
and knowledge management - CIKM ’10, page 939,
New York, New York, USA, 2010. ACM Press.

[8] Kevin Murphy. The Bayes Net Toolbox for MATLAB.
Computing Science and Statistics, 33, 2001.

[9] M. Ott, Y. Choi, Claire Cardie, and J.T. Hancock.
Finding deceptive opinion spam by any stretch of the
imagination. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume
1, pages 309–319. Association for Computational
Linguistics, 2011.

[10] Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu.
Review Graph Based Online Store Review Spammer
Detection. In 2011 IEEE 11th International
Conference on Data Mining, pages 1242–1247. IEEE,
December 2011.

