
A semantically enabled architecture for crowdsourced
Linked Data management

Elena Simperl
Institute AIFB

Karlsruhe Institute of
Technology
Germany

elena.simperl@kit.edu

Maribel Acosta
Institute AIFB

Karlsruhe Institute of
Technology
Germany

maribel.acosta@kit.edu

Barry Norton
Ontotext AD

Bulgaria
barry.norton@ontotext.org

ABSTRACT
Increasing amounts of structured data are exposed on the Web us-
ing graph-based representation models and protocols such as RDF
and SPARQL. Nevertheless, while the overall volume of such open,
or easily accessible, data sources reaches critical mass, the abil-
ity of potential consumers to use them in novel applications and
services is predicated on the availability of purposeful means to
query and manage the data, while taking into account and master-
ing its essential features in terms of decentralization, heterogene-
ity of schema, varying quality, and scale. Many aspects of these
challenges are necessarily tackled through a combination of algo-
rithmic techniques and manual effort. In the literature on tradi-
tional data management the theoretical and technical groundwork
to realize and manage such combinations is being established. In
this paper we build upon these ideas and propose a semantically
enabled architecture for crowdsourced data management systems
which uses formal representations of tasks and data to automati-
cally design and optimize the operation and outcomes of human
computation projects. The architecture is applied to the context of
Linked Data management to address specific challenges of Linked
Data query processing such as identity resolution and ontological
classification. Starting from a motivational scenario we explain
how query-processing tasks can be decomposed and translated into
MTurk projects using our semantic approach, and roadmap the ex-
tensions to graph-based data management technology that are re-
quired to achieve this vision.

1. INTRODUCTION
Linked Data refers to a set of guidelines and best practices for

publishing and accessing structured data on the Web.1 It builds
upon established Web technologies, in particular HTTP and URIs,
extended with Semantic Web representation formats and protocols
such as RDF, RDFS, OWL and SPARQL, by which data from dif-
ferent sources can be shared, interconnected and used beyond the
application scenarios for which it was originally created. RDF is

1http://www.w3.org/DesignIssues/LinkedData.
html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CrowdSearch@WWW2012
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

a central building block of the Linked Data technology stack. It is
a graph-based data model based on the idea of making statements
about (information and non-information) resources on the Web in
terms of triples of the form subject predicate object.2

The object of any RDF triple may be used in the subject posi-
tion in other triples, leading to a directed, labeled graph typically
referred to as an ’RDF graph’. Both nodes and edges in such
graphs are identified via URIs; nodes represent Web resources,
while edges stand for attributes of such resources or properties
connecting them. Schema information can be expressed using lan-
guages such as RDFS and OWL, by which resources can be typed
as classes described in terms of domain-specific attributes, proper-
ties and constraints.3 RDF graphs can be natively queried using the
query language SPARQL.4 A SPARQL query is composed of graph
patterns and can be stored as RDF triples together with any RDF
domain model using SPIN to facilitate the definition of constraints
and inference rules in ontologies.5

Over the past years Linked Data has established itself as the de
facto means for the publication of structured data over the Web,
enjoying amazing growth in terms of the number of organizations
committing to use its core principles and technologies for exposing
and interlinking data sets for seamless exchange, integration and
reuse.6 More and more ICT ventures offer innovative data man-
agement services on top of Linked (Open) Data. A first notable
example comes from the public administration sector, with a wide
array of governmental institutions in many countries worldwide
exposing their data according to open-access policies and Linked
Data principles and technologies. Other equally promising applica-
tion domains include life sciences, cultural heritage, and media and
broadcasting, with the BBC, the New York Times and the Guardian
adopting the same approach to publish metadata about their content
in order to increase Web traffic, improve site navigation and facili-
tate the integration of self-owned and public data sets.

Per design Linked Data management solutions aim to reach a
high level of automation with respect to the processing of an open
and decentralized data space bringing together data sources pub-
lished by different parties, of varying quality and using heteroge-
neous conceptual schemas and vocabularies. This is achieved by
using a minimal set of established Web technologies known for
their robustness and scalability, paired with a uniform data model

2http://www.w3.org/RDF/
3http://www.w3.org/TR/rdf-schema/,
http://www.w3.org/TR/owl-ref/

4http://www.w3.org/TR/rdf-sparql-query/
5http://spinrdf.org/
6See also recent statistics of the Linked Open Data Cloud at
http://www4.wiwiss.fu-berlin.de/lodcloud/

Figure 1: Generic architecture for applications consuming
Linked Data (according to [5])

and links between datasets facilitating exploration and integration.
Nevertheless, while the core technological building blocks of this
approach are maturing, and large amounts of useful data are con-
tinuously made available on the Web, the actual experience in de-
veloping Linked Data applications reveals that many aspects of
Linked Data management remain, for principled or technical rea-
sons, heavily reliant on human intervention. Figure 1 shows a
generic architecture of applications consuming data exposed us-
ing Linked Data principles and technologies [5]. The two layers
that lend itself to LD-specific tasks are the publication layer, and
the data access, integration and storage layer, respectively. Both
contain various aspects amenable to crowdsourcing, as we will see
later on: (i) publishing legacy data as RDF: identifying suitable
vocabularies and extending them, conceptual modeling, defining
mapping rules from the legacy sources to Linked Data; (ii) Web
data access: discovering or adding missing information about a re-
source; (iii) Vocabulary mapping and identity resolution: defining
correspondences between related resources (iv) Query processing
over integrated data sets: aligning different styles or attributes of
data integrated from heterogeneous data sources, detecting lack of
knowledge. In these scenarios, human contributions can serve dif-
ferent purposes, from undertaking the task itself, to generating data
to train specific automatic techniques, and validating (intermedi-
ary) outcomes of such techniques.

Recent approaches in the area of database management systems
[1, 4, 9] are laying out the theoretical and technical foundations for
designing and building crowdsourcing-enabled data management
technology. In this paper we build upon these ideas and propose a
semantically enabled architecture for crowdsourced data manage-
ment systems which uses formal representations of tasks and data
to automatically design and optimize the operation and outcomes
of human computation projects. The architecture is applied to the
context of Linked Data management to address specific challenges
of Linked Data query processing such as identity resolution and
ontological classification. Starting from a motivational scenario
we explain how query-processing tasks can be decomposed and
translated into MTurk projects using our semantic approach, and
roadmap the extensions to graph-based data management technol-
ogy that are required to achieve this vision.

2. CROWDSOURCING LINKED DATA MAN-
AGEMENT

Our general idea to use microtask crowdsourcing for Linked Data

Figure 2: Overview of our approach

management envisions the enhancement of core components of the
architecture presented in Figure 1 with integrated crowdsourcing
features that deal with the packaging of specific tasks as MTurk
HITs, and with the integration of the crowdsourcing results with
existing semi-automatic functionality. Figure 2 schematically de-
picts this idea for a query processing scenario, which is further
discussed in Section 3. Dealing with MTurk includes user inter-
face management capabilities, in order to produce optimal human-
readable descriptions of specific tasks operating on specific data, to
increase workers’ productivity, and to reduce unintended behavior
such as spam, but also workflow design capabilities for handling
complex tasks. As described in [2] we propose to use SPARQL
graph patterns to describe tasks and data to drive the generation
of HITs interfaces, as well as extensions of Linked Data manage-
ment languages and components, most prominently query process-
ing, mapping and identity resolution, and Linked Data wrappers
with crowdsourcing operators. The corresponding Linked Data
components need to interact with the MTurk platform to post spe-
cific HITs, assess the quality of the outcomes, and exploit these in
a particular application. This interaction can occur offline, when
crowdsourcing input is being used to gradually improve the quality
of computational methods, and online, which may require specific
optimizations to predict the time-to-completion of crowdsourced
tasks.

Each task that is subject to a crowdsourcing exercise is describes
using graph patterns from the SPARQL query language represent-
ing input to the human task and its desired output. The input pattern
expresses a query over the existing collection of Linked Data, nec-
essary to provide the input to the MTurk task. The output pattern
represents a query that should succeed when the additional asser-
tions that result from the human task have been added to the knowl-
edge. This is similar to the characterization of Linked Open Ser-
vices [6] and Linked Data Services [11], and also the characteriza-
tion of discovery goals in [8]. In [2] we discuss and give examples
of such patterns for tasks such as identity resolution and ontologi-
cal classification, which are key to crowdsourced query processing,
as we will see in the next section.

The inclusion of commonly-used predicates in the SPARQL pat-
terns used to describe tasks and data, predicates which have pre-
configured screen representations in Linked Data browsers7 means
that tasks can be given HTML-based representations simply based

7For instance the retrieval of an object to a foaf:depiction
predicate and rendering as an image, the mapping of geospatial
wgs84 predicates on a map.

Figure 3: Interface for the identity resolution task generated
from SPARQL descriptions

on existing technology.8 This is a significant advantage of the
Linked Data nature of the data sets being subjected to crowdsourc-
ing in this approach, whereas questions related to the optimal phras-
ing of the task require verbalization techniques to provide a human-
readable interface to graph-based data which is intended, at least in
its original form, to machine-only consumption [3].

For illustration purposes, consider the case of identity resolution
in Linked Data. Although identifiers for individual RDF resources
can be directly reused in assertions in other data sets (usually as the
object in triples), it is often the case that a new identifier scheme
is created for an overlapping set of resources. Identity resolution
is concerned with the definition of links, typically using predi-
cates such as owl:sameAs or skos:narrower/broader to docu-
ment correspondences and connections between different entities.
Such links can be created by data providers or other parties man-
ually, but more often they are subject to specific semi-automatic
link discovery techniques, whose outcomes have to be enhanced
through human input (used for training or validation purposes).
The identity resolution of two types of entities (weather stations
and airports) defined in two different Linked Data sets METAR (
MÉTéorologique Aviation Régulière) and DBpedia9 could be rep-
resented using SPARQL graph patterns as follows. The input graph:
{?station a metar:Station; rdfs:label ?slabel; wgs84:lat ?slat;
wgs84:long ?slong . ?airport a dbp-owl:Airport; rdfs:label
?alabel; wgs84:lat ?alat; wgs84:long ?along} stands for the
query to be issued against the two data sets, whose results will
form the data space to be subject to crowdsourcing. The output
graph: {OPTIONAL {?airport owl:sameAs ?station}} expresses
the condition which will be fulfilled when the crowdsourcing project
is accomplished, in other words, when all airport instances in one
data set will be matched to the corresponding weather stations in
the other. Existing Linked Data browsing technology can be used
to transform the graphs satisfying these two queries into an HTML
page with side-by-side maps, showing the labels, with a button that
will assert the sameAs link, and another which will not (hence the
OPTIONAL keyword in the output graph). Filters can be used, for
instance with geospatial extensions, to find proximal candidates.
The user interface that could be formed from these graphs is shown
in Figure 3.

In addition, the usage of this kind of descriptions forms the basis
for the definition of semantic workflow management functionalities
which could be used to handle the design of more complex tasks
[10], though a more detailed analysis of typical patterns and their
characteristics is needed in order to implement the approach. Addi-

8See also http://km.aifb.kit.edu/sites/spark/
9http://dbpedia.org

tional optimizations, in terms of, e.g., the selection of tasks which
need to be answered by the crowd, and cannot be inferred from ex-
isting answers are briefly discussed in the next section. The general
line of reasoning is that by using a declarative approach to describ-
ing the overall crowdsourcing process, in particular SPARQL and
other Linked Data formats and representations, we are able to resort
to an established technology infrastructure consisting of query en-
gines, reasoners and browsers to implement a large share of the en-
visioned crowdsourcing architecture. A second, equally important
category of components is specific to the operation of the microtask
platform, including quality assessment and resource management,
where we would resort to existing approaches in the crowdsourcing
literature.

3. CROWDSOURCING QUERY PROCESS-
ING

In our approach both human and computational tasks can be de-
scribed and executed using the same SPARQL-based language. A
crowdsourcing-enabled SPARQL engine seamlessly combines in-
formation from both, and includes methods to decide for which
types of queries and for which data it resorts to external human-
based services, computes query plans taking into account perfor-
mance estimates of these services, evaluates the outcomes, and in-
tegrates the correct ones into the overall query execution. In real-
izing this approach it is necessary to extend the algebra into which
the query is translated to explicitly represent human tasks, and then
make use of these extensions in deriving an appropriate evaluation
strategy. While current triple stores have found little advantage
from caching results between queries, this will be critical in im-
plementing queries including human tasks. Nevertheless, experi-
mental caching implementation can be reused to realize this. The
real challenge, however, in caching human results is to account for
updates to the underlying datasets. Where data loading, of multiple
datasets, is explicit, materialization can be applied and the question
is what degree of existing results can be carried over when a new
version of a dataset is added. In the case of federation there are
many open questions about versioning that the community has yet
to answer.

As a running informal example we will use the provision of a
Linked Data set of weather reporting (METAR) stations, and the
provision of a Linked Service [7]. These are a superset of com-
mercial airports, some of which are included in the popular Linked
Data sets DBpedia and Geonames.10

3.1 Extensions to SPARQL and VoID
The RDF based schema to describe Linked Data sets is VoID

(’Vocabulary of Interlinked Datasets’).11 Under this scheme, a data
set is defined as a collection of data published and maintained by a
single provider and it is annotated with the label void:Dataset.
The interlinking of two different data sets is modeled with the label
void:Linkset. A link set in VoiD is a subclass of a data set,
where each triple in the link set meets the following conditions:
its subject is a resource hosted in one data set, its object is a re-
source hosted in another data set, and its predicate corresponds to
the void:linkPredicate of the link set.

Example 1. (Specification of Data Sets) Getting back to our pre-
vious example, the following triple patterns correspond in VoID to
the definition the data sets METAR and Geonames, and their inter-

10http://www.geonames.org
11http://semanticweb.org/wiki/VoiD

linking with the specification of the linkset :METAR2Geonames
through the predicate owl:sameAs.

:METAR rdf:type void:Dataset .
:Geonames rdf:type void:Dataset .

:METAR2Geonames rdf:type void:Linkset ;
void:linkPredicate owl:sameAs ;
void:target :METAR ;
void:target :Geonames .

Based on the definition of link set, interlinking two data sets
through any predicate can be performed automatically, by the im-
plementation of the following restriction by a SPARQL engine.

CONSTRUCT {
_:d1d2 a void:Linkset ;

void:linkPredicate ?predicate ;
void:target ?dataset1 ;
void:target ?dataset2 .

} WHERE {
?x1 ?predicate ?x2 .
?x1 void:inDataset ?dataset1 .
?x2 void:inDataset ?dataset2 .
FILTER (?dataset1 != ?dataset2) }

In order to support crowdsourcing tasks in queries that involve
incomplete data or user-perceived comparisons, we will use an ex-
tension to the VoID vocabulary which specify which entities of a
data set could be crowdsourced in terms of their domain-specific
typing as classes and properties.

Example 2. (Crowdsourced class) The vocabulary VoID is ex-
tended with the label void:crowdClass to allow the creation of
classes for which ontological classification of instances will be crowd-
sourced. Accordingly, all subclasses of the crowdClass are also
defined (implicitly) as crowdsourced entities. The following exam-
ple defines the class metar:Airport and its corresponding subclass
metar:CommercialHubAirport of the data set METAR as
classes with crowdsourced classification.

metar:Airport void:inDataset :METAR .
metar:CommercialHubAirport void:inDataset :METAR;

rdfs:subClass metar:Airport .

metar:Airport rdf:type void:crowdClass .

Example 3. (Crowdsourced property) In a similar fashion, the
instantiation of ontological properties can be crowdsourced with
the VoiD extension void:crowdProperty. Analogously to
classes, all subproperties of the crowdProperty are also sub-
ject to crowdsourcing. The following example defines the prop-
erty gn:alternateName and its corresponding subproperty short-
Name of the data set Geonames as properties whose instantiation
requires inputs from the crowd.

gn:alternateName void:inDataset :METAR .
gn:shortName void:inDataset :METAR ;

rdfs:subProperty gn:alternateName .

gn:alternateName rdf:type void:crowdProperty .

Properties related to general ontology languages such OWL are
treated as extensions of SPARQL operators, and are modeled in
our architecture as tasks. The application of crowdsourcing to both
class- and property-oriented instantiations could be further speci-
fied using formalisms such as SPIN in order to define specific types
of instances or to constrain the cases in which crowdsourcing is as-
sumed to be the most appropriate choice by design.

3.2 Crowdsourced query processing tasks

3.2.1 Identity resolution
Identity resolution involves the creation of owl:sameAs links,

either by comparison of metadata or by investigation of links on the
human Web. The following example illustrates a scenario where
the crowd is needed to decide whether two resources refer to the
same real-world entity.

Example 4. This SPARQL query retrieves the names (labels) of
METAR stations that correspond to airports. In order to do this,
the crowd should decide if a station refers to a given airport in real-
world by the resolution of the owl:sameAs link.

SELECT ?label WHERE {
?station a metar:Station;

rdfs:label ?label .
?airport a metar:Airport .
?station owl:sameAs ?airport .}

The execution of identity resolution tasks might be very expen-
sive, in particular if the data set is large and all the identifiers should
be compared. Consider the scenario where the data set is comprised
of n identifiers and the crowd must compare only once all the re-
sources by pairs, then, the total number of queries sent to the human
web is

(
n
2

)
. In order to reduce this number, the proposed architec-

ture uses the semantics of the resources by implementing in the
framework SPIN a transitive property to infer facts automatically,
instead of solving them by human intervention. This may reduce
the number of human tasks up to 33%, in the best case.

3.2.2 Ontological classification
While the Semantic Web concentrated heavily on (OWL) on-

tologies, and therefore the classification of resources, Linked Data
tends to shift the emphasis on the relationships between resources.
Furthermore, due to the promoted use of generic vocabularies, is
it not always possible to automatically infer classification from the
properties used by applying established reasoning methods and tech-
niques. Classification relates to (but is not subsumed by) the iden-
tity resolution task. For example, commercial airports can be iden-
tified and are partially classified in DBpedia and Geonames, other
kinds of METAR station are not recorded or easily derivable and
require human input.

Example 5. The following SPARQL query retrieves the names
(labels) of METAR stations that correspond to commercial airports.
In order to answer this query, first the stations are classified by the
crowd in specific types of stations, e.g., commercial airport, private
airfield, weather balloon, etc.

SELECT ?label WHERE {
?station a metar:CommercialHubAirport;

rdfs:label ?label.}

Without using semantic technologies, a traditional crowdsourc-
ing system should classified the data set by comparing each re-
source against the others. Assuming that the data set is comprised
of n resources and they are compared by pairs and only once, then,
the total number of comparisons performed by human tasks in a
traditional system is n · (n − 1). Our architecture is able to infer
classification from the semantics of the data and incorporates the
properties already solved by human intelligence in order to execute
automatic inferences and reduce the number of tasks sent to the
crowd.

3.2.3 Missing information
Due to the decentralized nature of the data publishing process in

a Linked Data scenario, the resulting datasets are often of insuffi-
cient quality. A prominent example in this respect are missing links
between entities, which may hamper the feasibility of the overall
approach as an automated solution to large-scale data integration.
A second, equally important category of incompleteness problems
is related to the absence of natural-language labels of resources,
which challenge the ways application developers interact with the
data, and the generation of end-user interfaces for application con-
suming Linked Data. Missing information might be present in ev-
ery aspect of a query processing scenario, thus, it not always fea-
sible to handle it adequately. Nevertheless, translation tasks might
be identified by the SPARQL keyword LANG.

Example 6. The following SPARQL query retrieves the names
(labels) in German of METAR stations that correspond to commer-
cial airports. In order to execute this query, the labels of airports
that are not expressed in German language should be translated by
human intervention.

SELECT ?label WHERE {
?airport a metar:CommercialHubAirport;

rdfs:label ?label .
FILTER (LANG(?label) = "de")}

3.2.4 Ordering
Despite that the ‘uniform data model’ in Linked Data is graph-

like, and bears minimal order, having means to rank Linked Data
content along specific dimensions is typically deemed useful for
querying and browsing. This includes situations in which a specific
ordering is imposed over the data; for instance, a temporal order
defined via time stamps metadata, but also situations in which such
orderings need to be defined via less straightforward built-ins; for
instance, the ordering of pictorial representations of entities. The
latter is symptomatic for the Web of Data, as in an open world there
can be a number of alternative human-oriented representations of
certain resources and their metadata, and many different ways to
order these entities, for example, in a data set with n resources these
ones can be ordered in n! different ways. In some cases, there are
relationships between resources that cannot be inferred by applying
reasoning techniques or that correspond to subjective comparisons
and should be solved by human input.

Example 7. The following SPARQL query retrieves all airports
and their pictures, and the pictures should be ordered according to
the more representative image of the given airport. In order to solve
subjective comparisons, in this example of pictures, we propose a
SPARQL extension where the order modifier CROWD is added to
the ORDER BY clause.

SELECT ?airport ?picture WHERE {
?airport a metar:Airport;

foaf:depiction ?picture .
} ORDER BY CROWD(?picture,
"Most representative image for %airport")

Complementarily, specific types of similarity computations or
partitions of the data that humans can deal with easily would be
subject to crowdsourcing services, while the remaining task would
still be addressed automatically. The proposed architecture is able
to automatically solve tasks that can be inferred by the seman-
tics of the resources. These computational tasks are expressed
as SPARQL queries and are sketched in Table 1. The presented
queries are not the only solution, there might be more sophisticated
queries to perform more complex reasoning on the data, but with

Table 1: Computational tasks expressed as SPARQL queries
Task Generalized SPARQL Query

Identity Resolution

CONSTRUCT {
?a owl:sameAs ?c .

} WHERE {
?a owl:sameAs ?b .
?b owl:sameAs ?c .}

Classification

CONSTRUCT {
?a a ?b .
?b rdfs:subClassOf ?c .

} WHERE {
?a rdfs:subClassOf ?c .
?b rdfs:subClassOf ?b1 .
?b1 rdfs:subClassOf ?c .}

Ordering

CONSTRUCT {
{(?a ?b) a rdf:List .}

} WHERE {
(?a ?x) a rdf:List .
(?x ?b) a rdf:List .}

these simple restrictions expressed in SPIN, a significant number
of facts can be automatically inferred without requiring human in-
tervention.

3.3 Query parsing, optimization and execution
Since the proposed architecture is SPARQL-based, query plan

generation and execution are similar to the ones performed by tra-
ditional SPARQL query engines. As shown in Figure 2, our ar-
chitecture has a parser, optimizer and execution components. To
illustrate the query processing steps, consider the following query.

Example 8. This SPARQL query retrieves the labels in german
of commercial airports located in Baden-Württemberg, ordered by
the better human-readable description of the airport given in the
comment.

(1) SELECT ?label WHERE {
(2) ?x a metar:CommercialHubAirport;
(3) rdfs:label ?label;
(4) rdfs:comment ?comment;
(5) owl:sameAs ?y .
(6) ?y geonames:parentFeature ?z .
(7) ?z owl:sameAs

<http://dbpedia.org/resource/Baden-Wuerttemberg> .
(8) FILTER (LANG(?label) = "de")
(9)} ORDER BY CROWD(?comment,

"Better description of %x")

When a SPARQL query is issued, the parser decomposes the
input query in terms of the data sets that should be accessed to pro-
duce answers and rewrites the query based on this information. The
query presented in Example 8 is decomposed into sub-queries by
the parser as follows: graph-patterns (2)-(5) and (8) must be evalu-
ated in METAR data set, while graph-patterns (6) and (7) must be
evaluated in Geonames data set. The optimization module gener-
ates a logical plan using the data sets definition to determine which
parts of the query should be solved by human input. In the run-
ning example, consider that the class metar:Airport is defined as
a void:crowdClass, then a possible logical plan could be: first
classify the existing METAR stations (variable ?x) as commercial
airports to solve graph-pattern (2); solve graph-patterns (5) and (7),
which correspond to identity resolution tasks of airports and loca-
tions, respectively; join the previous results to obtain the commer-
cial airports located in Baden-Württemberg; to solve (8) the labels
of the retrieved airports should be translated into German labels,

if they are not; and finally the comments related to these airports
should be ordered according to a subjective comparison in (9). Tra-
ditional databases optimization techniques such as predicate push-
down and join-ordering can be applied. The optimized logical plan
is translated into a physical plan, and it is evaluated by the execu-
tion module, which is able to automatically solve some parts of the
query by posing SPARQL sub-queries against Linked Data sets or
SPARQL endpoints, and by inferencing facts from the restrictions
sketched in Table 1. Complementarily the query engine invokes
the crowdsourced query processing component to generate tasks
that should be performed by humans. These tasks are described as
query patterns as explain in [2], as a basis for the creation of HTML
interfaces for the corresponding HITs.

4. RELATED WORK
Combining traditional data management technology and crowd-

sourcing has recently received some attention in the area of databases
[1], with approaches such as CrowdDB [4] and TurkDB [9] propos-
ing extensions of established query languages and processing tech-
niques to deal with the challenging inherently arising when deal-
ing with less deterministic computational resources such as humans
in environments with high performance and scalability constraints.
By comparison our work specifically targets graph-based represen-
tation formats and protocols, in particular Linked Data, and pro-
poses the usage of the same technologies, SPARQL, SPIN and
Semantic Web vocabularies such as VoiD to induce crowdsourc-
ing functionality to Linked Data query processing. This declara-
tive approach facilitates the automatic design of HITs interfaces,
and reduces the number of tasks which need to be executed manu-
ally by taking into account semantic properties of the data. There
is an increasing body of research available that looks into meth-
ods and techniques to improve worker productivity and HITs de-
sign, with the most promising findings being published at the an-
nual HCOMP workshop.12 These results are complementary to our
work, as they crowdsourcing-specific optimizations rather than data
management-related ones.

5. OUTLOOK
In this paper we have outlined an architecture able to combine

Linked Data management and human effort in order to improve
the outcomes of crowdsourcing projects. This is achieved first by
extending traditional data management technologies, through the
replacement of existing components with human-augmented com-
ponents. Then, we follow a declarative model where both human
and computational tasks are described with semantic technologies.

We have shown for query processing scenarios how the well-
defined structure and semantics of standard-compliant Linked (Open)
Data sets, and the proposed small extensions to VoiD and SPARQL
can support the automatic breakdown of a project and the genera-
tion of tasks for further crowdsourcing.

In the future we plan to semantically define workers and to ex-
tend the specifications of human tasks in order to incorporate re-
source management capabilities in the proposed architecture, op-
timizing the processes of tasks pricing and workers’ assignment.
Also, we are working towards a first release of a Sesame-based im-
plementation of the query engine including the operators and func-
tionality briefly introduced in the previous section.

12See http://www.humancomputation.com/

Acknowledgements
The research leading to this paper was partially supported by the
Network of Excellence PlanetData, funded by the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under the
contract 257641.

6. REFERENCES
[1] A. Doan, R. Ramakrishnan, and A. Halevy. Crowdsourcing

systems on the World-Wide Web. Communications of the
ACM, 54:86–96, 2011.

[2] B. Norton E. Simperl and D. Vrandecic. Crowdsourcing
tasks in Linked Data management. In Proceedings of the 2nd
workshop on consuming Linked Data COLD2011 co-located
with the 10th International Semantic Web Conference ISWC
2011, 2011.

[3] B. Ell, D. Vrandečić, and E. Simperl. Labels in the Web of
Data. In Proceedings of the 10th International Semantic Web
Conference (ISWC2011). Springer, October 2011.

[4] M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: answering queries with crowdsourcing. In
Proceedings of the 2011 International Conference on
Management of Data SIGMOD 2011, pages 61–72, 2011.

[5] T. Heath and C. Bizer. Linked Data: Evolving the Web into a
Global Data Space. Synthesis Lectures on the Semantic Web
Theory and Technology. Morgan & Claypool, 2011.

[6] B. Norton and R. Krummenacher. Consuming dynamic
linked data. In Proceedings of the First International
Workshop on Consuming Linked Data COLD2010, volume
665. CEUR-WS.org, November 2010.

[7] B. Norton and R. Krummenacher. Geospatial Linked Open
Services. In Proceedings of the Workshop Towards Digital
Earth, volume 640. CEUR-WS.org, September 2010.

[8] B. Norton and S. Stadtmüller. Scalable Discovery of Linked
Services. In Proc. 4th Intl. Workshop on REsource Discovery
(RED 2011), volume 737. CEUR-WS.org, May 2011.

[9] A. Parameswaran and N. Polyzotis. Answering Queries
using Humans, Algorithms and Databases. In Conference on
Inovative Data Systems Research CIDR 2011, 2011.

[10] B. Norton R. Krummenacher and A. Marte. Towards linked
open services and processes. In Proceedings of the Future
Internet Symposium FIS 2010, pages 68–78, 2010.

[11] S. Speiser and A. Harth. Integrating Linked Data and
Services with Linked Data. In Proc. 8th Extended Semantic
Web Conference ESWC2011, volume 6643. Springer, June
2011.

