Mechanical Cheat: Spamming Schemes and Adversarial
Techniques on Crowdsourcing Platforms

Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudré-Mauroux
eXascale Infolab
U. of Fribourg—Switzerland
{firstname.lastname}@unifr.ch

ABSTRACT

Crowdsourcing is becoming a valuable method for companies
and researchers to complete scores of micro-tasks by means
of open calls on dedicated online platforms. Crowdsourcing
results remains unreliable, however, as those platforms nei-
ther convey much information about the workers’ identity
nor do they ensure the quality of the work done. Instead, it
is the responsibility of the requester to filter out bad workers,
poorly accomplished tasks, and to aggregate worker results
in order to obtain a final outcome. In this paper, we first re-
view techniques currently used to detect spammers and ma-
licious workers, whether they are bots or humans randomly
or semi-randomly completing tasks; then, we describe the
limitations of existing techniques by proposing approaches
that individuals, or groups of individuals, could use to at-
tack a task on existing crowdsourcing platforms. We focus
on crowdsourcing relevance judgements for search results as
a concrete application of our techniques.

Categories and Subject Descriptors

H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval; H.3.4 [Information Storage
And Retrieval]: Systems and Software

General Terms

Algorithms, Experimentation, Performance

Keywords

Crowdsourcing, Spam, Adversarial IR, Malicious workers

1. INTRODUCTION

Crowdsourcing is the process of indirectly employing anony-
mous people over the internet, often for a nominative amount
of money, to complete concise tasks (called micro-tasks) that
are typically too complex for today’s computers but rela-
tively simple for humans. Examples of such micro-tasks

Copyright is held by the author(s).
CrowdSearch 2012 workshop at WWW 2012, Lyon, France

include image annotation, relevance judgement, sentiment
analysis, language translation, etc. Currently, crowdsouc-
ing platforms like Amazon Mechanical Turk! (AMT) allow
requesters to create tasks in the form of web pages, decide
on how much to pay per task, and restrict participants by
declaring filters on acceptance rate, country, etc. Once the
tasks are completed, the requester gets back results in the
form of raw files from which they are supposed to filter out
bad answers, and decide whether or not to pay for each
given answer. One particular appeal of crowdsourcing is to
complete large collections of tasks that a requester cannot
do by himself in a reasonable amount of time; hence, going
through all the response manually is also not practical.

Crowdsourcing calls attracts different categories of poten-
tial workers; a study of the demographics showed that work-
ers are spread over country clusters (mostly in India and
USA), age and occupation. The incentives for completing
a task varies per task type and per individuals. For more
than 50% of the Indian workers, for instance, crowdsourcing
is a primary or secondary source of income?. This obviously
negatively influences the efforts and time taken to complete
tasks on the crowdsourcing platform, since many requesters
do not use tight quality control schemes (previous research
has shown that it is better to systematically pay for all com-
pleted tasks rather than to risk not paying honest workers
12)).

The focus of this paper is the increasing adoption of crowd-
soucing in a context where the workers’ incentive is solely
monetary. Skimming through the tasks and hastily or ran-
domly filling out web forms is the simplest form of crowd-
sourcing treachery. Knowledgeable individuals can go much
further and create automated programs that employ ad-
vanced methods to complete tasks. We can for example
imagine organized groups sharing information to complete
collections of tasks faster. In the following, we show that
in the absence of strict control and monitoring mechanisms
on the crowdsourcing platforms, the requesters are reduced
to rely on manual labor, artificial intelligence or statistical
methods to filter out potentially erroneous responses.

Our final claim is that
Current crowdsourcing quality control techniques
are nsufficient to counter organized groups of
workers who maliciously aim at gaining money
disregarding the quality of their completed tasks.

"https://www.mturk. com/mturk/welcome
2http://hdl.handle.net/2451/29585

1@ 075
N , TopUs 07
c T Worker
K] - 065
0 4 c
‘S) i S
@ [} 5 °f
4 ° S
o5 @ u 2 oss
- - a
a @ g ©Us Work %
< ® w BN Work & 08
o - e o
e B - ”“II““
. I|| 11
0@ 035 1 1 I I
oooooooooooooooooooo
0 250 s || SXIRARRRRR AIRRRRTRRRG
Number of Tasks Time to complete task (seconds)

(a) (b)

Figure 1: (a) Worker precision distribution (from
[4]). (b) Task quality over task completion time.

The remaining of this paper is organized as follows: In
Section 2, we present the motivation of this work. We give
an overview of anti-adversarial techniques in Section 3. In
Section 4, we describe a series of possible attacks that could
undermine today’s anti-adversarial techniques. We draw our
conclusions and highlight future directions in Section 5.

2. MOTIVATION

Despite many recent research efforts dedicated to result
filtering and cheaters detection, quality control methods re-
main largely bound by the following factors: 1) Task type
2) Time 3) Cost 4) Participants. First, we believe that the
current techniques can hardly be generalized to any type
of tasks, especially for subjective types of tasks like review
writing and text translation. Second, in the absence of a rep-
utation system® participants remain anonymous and little
information is communicated to the requesters, it is there-
fore difficult to conclude that an experiment is repeatable
and to assess how many dishonest workers were involved.
Cost is also a sensitive variable: it has been shown that
paying a higher reward for a task does not lead to higher
quality but only to lower completion time (see, for example,
[1]). In an experiment we previously conducted [4] where we
manually judged all worker answers, we observed that more
than 75% of Indian workers achieved a precision of 50% or
less. Figure 1a shows the precision of the workers against the
number of tasks they performed. Out of the 4088 submitted
tasks, only 1 worker achieved a precision of 0.85 while an-
swering 288 tasks. Do the available quality control schemes
respond to the behavior of the current worker population?
In the following we will describe adversarial techniques pro-
viding examples based on the relevance judgement scenario:
documents are shown to the user together with a keyword
query; the worker has to judge the relevance of the document
(possibly on multiple levels) with respect to the query.

3. ANTI-ADVERSARIAL TECHNIQUES

We can distinguish two categories of crowdsourcing anti-
adversarial schemes: a priori cheater dissuasion and a poste-
riori quality control. In the following, we summarize briefly
some of the common techniques from both perspectives, and
discuss some of their advantages and drawbacks.

3Tt has to be mentioned that recently AMT introduced the
concept of Masters, that is, workers which have proved to
perform well on certain task types. Anyhow, it is out of the
requester’s control to decide who is a quality-worker at this
stage.

3.1 Task Design

Task design is the sole responsibility of the requester. At a
minimum, it consists of choosing the right way to formulate
the task and the right incentives. A study on the impact of
incentives was recently conducted [14] and partly concluded
that crowdsourcing platforms favor monetary incentives in-
stead of social ones. The study also hypothesized that ex-
plicit worker conditioning (e.g., inform the worker that dis-
agreement with other workers on the same task will be pun-
ished) on top of quality control can lead to better quality
results. In [12], Kitture et al. stressed the importance of
task formulation and of having verifiable results with two
variants of a given task formulated differently; along the
same line, [7] observed that cheaters are less attracted to
“Novel tasks that involve creativity and abstract thinking”.
Incentives and sophisticated task formulation form a good
barrier for cheaters but constitute a burden for the requester
who only needs the task to be done.

3.2 Task Repetition and Aggregation

For many tasks, result of the aggregation of multiple an-
swers from non-expert workers (the so-called wisdom of the
crowds) can be compared to the results of more expensive ex-
pert workers as shown in several evaluations of crowdsourced
relevant judgment or other labeling experiments [16, 15, 3].
In general, and in the presence of noisy answers, the same
task is offered multiple times to different workers; once all
the tasks are completed, the requester decides what answers
to pick up and how to aggregate them. The aggregation of
the final results is a well studied topic; the most straightfor-
ward approach in this context is to proceed with a majority
decision (e.g., [13]). The authors of [9] formalized the ma-
jority decision approach and proposed the use of a control
group that double-checks the answers of a prior run.

The primary goal of task repetition is to diversify the out-
put by asking different workers, which is desired and even
required for many task types; it comes however with the
price of multiplying the cost by the number of repetitions.

3.3 Test Questions

As part of the recommendations in [12], Kittur et al. also
suggest to formulate verifiable tasks. Cheaters and non-
serious workers will likely start tasks without reading the re-
quester directions, and then randomly click generating most
likely a wrong answer. In this case, a simple screening pro-
cess could be used [6]. The requester chooses K first tasks as
qualification test that the worker has to pass first. Moreover,
in our recent work ZenCrowd [4] we applied a posteriori con-
tinuous testing, where for every 10 tasks we tested worker
answers against a gold standard set. Other test method-
ologies can be used throughout the experiments with classic
anti-spamming techniques like CAPTCHAs to filter out au-
tomatic answers, for which the requester will not have to
worry about creating a test set of questions.

Test questions are powerful traps for cheaters and spam-
mers, especially when they cannot be differentiated from
regular tasks. This comes at a cost: for large amounts of
tasks however, a bigger gold standard set is needed to avoid
workers spotting recurrent questions. Moreover, test ques-
tions should be selected carefully so that a) they do not trick
real workers and b) they are not easy for robots to answer.

3.4 Machine Learning Filtering

The distribution of workers and the number of tasks they
perform is usually characterized by a power law distribu-
tion [1] where many workers do few tasks and few workers
do many tasks. The quality of aggregating the results in
such a context (e.g, with a majority decision scheme) is self-
contained in the judgment of the task. Using machine learn-
ing algorithms [17, 5, 10, 4] allows one to carry over some
knowledge about the workers across tasks. In our ZenCrowd
entity-linking system [4], we started with a learning phase
to label workers with a confidence score to decide how to
weight the worker’s answer, then used a probabilistic net-
work to propagate and update scores across workers and
tasks.

3.5 Current AMT Techniques

Requesters on AMT can already benefit from some ba-
sic aggregation and anti-spamming features provided by the
Amazon platform. A requester on AMT is not able to di-
rectly assign a task to a specific worker; he can only publish
the task on the “market”, and typically the first worker who
agrees to pick the task will do it. In addition, the platform
allows requesters to add a few constraints when the task is
published, in order to help in avoiding low-quality and ma-
licious workers. First, requesters can filter workers based
on their previous acceptance rate: if on previously submit-
ted tasks a worker had an acceptance rate lower than, for
example, 95%, then he is not allowed to accept such task.
Additionally, requesters can add filters on worker location
(at the granularity of the country), number of tasks per-
formed so far, and add a qualification test before the task is
assigned. After a task has been completed, requesters can
always decide not to pay for poorly performed tasks and
can even report bad workers to AMT, which may lead to
the worker account being suspended. Naturally, this can
only happen after poor results and/or malicious workers are
detected. Such simple features can be sufficient for simple
adversarial techniques, but not for organized group attacks
as explained in the next section.

4. ADVERSARIAL TECHNIQUES

This section presents an overview of possible attacks to
crowdsourcing platforms that we envision. We define a dis-
honest answer in a crowdsourcing context as a task that has
been either: i) randomly posted ii) artificially generated or
iii) duplicated from another source. We differentiate spam-
ming attacks by the level of collaboration used to generate
dishonest answers. Individual attackers try to proceed as
fast as possible to earn additional money but are more likely
to run into easy test traps; group attacks are more organized
and exploit the repeatability of a task to build knowledge,
and hence become more difficult to detect. In the following,
and without loss of generality, we use the scenario where
workers are asked to judge the relevance of search results
given a keyword query.

4.1 Individual Attack

4.1.1 Random Answers

When a worker has spent some time trying to solve the
task and realizes that he is not able to provide a good answer,
it is more likely that a random answer will be given rather
than the task will be returned. Moreover, malicious workers

Figure 2: Group attack mechanism using a dis-
tributed map of question answers

will quickly and randomly answer in order to obtain the
reward fast. In our previous experiment [4] we have observed
that 10% of $0.01 tasks have been completed in less than 5
seconds. As we can see in Figure 1b quickly completed tasks
provide lower quality work. Therefore, completion time is a
strong indication of a malicious random answer.

Random answers jeopardize tasks designed with mone-
tary incentives and no test questions. The workers prefer to
provide a random answer to collect the money rather than
skipping the task. However, depending on the number of
random answers in the collected results, they could be fil-
tered out by task repetition.

4.1.2 Automated Answers

Spammers create generic malicious programs —or bots—
capable of registering to do tasks and submitting answers
either randomly or with minimal artificial reasoning.

Test questions constitute a good trap for this attack. How-
ever bots can massively attack a task and thus increase their
chances to pass qualification test questions.

4.1.3 Semi-Automated Answers

We identify semi-automated answers as bots specifically
designed for a given task (e.g., relevance judgement). Spam-
mers can use pre-existing packages and tailor their attacks
to a given context. In our use-case, the spammers can cre-
ate a bot that opens all the links, parses the corresponding
HTML content and attempt to complete the relevance judg-
ment task whenever possible. Or, it can run the query in a
search engine and identify which of the proposed links has
been ranked first. If the bot is not sure about its answer,
it can even ask a human, for a given ratio of questions, to
increase its answer accuracy or return low confidence HITs
to preserve its approval rate.

Such semi-automatic approaches can considerably improve
the time/reward ratio of dishonest workers and they target
task collections with easy-to-answer test questions.

4.2 Group Attack

By a group attack we mean a group of individuals or bots
focusing on the same batch of tasks. This group can use a
distributed dictionary of questions and answers. Depending
on the attack, answers (e.g., query-result pairs) are recorded
in this dictionary called Shared Question Answer Dictionary
(SQAD) which is shared among the group (see Figure 2).

4.2.1 Agree on Answers

Typically, the requester would expect some agreement on

the answers received for a given task; it is typically rec-
ommended to shuffle the order of the questions and their
answers to prevent an all-agree-on-first strategy. In our use
case, the attackers could use the following strategy: the first
worker who sees a task will select a link randomly, and then
an automated system will create an entry in a SQAD with
the query string and the chosen link. If the same task is
encountered again, the automated system will highlight or
automatically submit the stored answer.

This attack makes majority vote filtering ineffective as it
may discard valid answers.

4.2.2 Answer Sharing

From Section 3.3, we can categorize test questions and
their respective attacks into:

e Gold standard: The requesters can only input a limited
number of these questions and often will require redun-
dancy. Spammers will exploit this weakness by having
all the workers agree on honestly answering some ques-
tions and submitting their answers to a SQAD. The
answers to test questions get shared as well.

e Turing test questions: Such questions (e.g., Captcha)
are widely used to stop bots, they can also be gener-
ated indefinitely, which makes it impossible to track
with a SQAD. Since only humans can pass these tests,
it is sufficient that the task is recognized as a test to
require full human attention. The remaining of the
task can be completed automatically.

4.2.3 Artificial Clones

This attack is similar to Answer Sharing, with the dif-
ference that the malicious worker acts alone by answering
honestly to questions and storing them, then spawns auto-
mated programs that duplicate the spammer’s behavior by
reading his answers. If the program encounters an unseen
question, it can either skip the question (if allowed by the
platform), answers randomly, or ask a human.

This attack presents a challenge for all the anti-adversarial
schemes we are aware of, as the bots merely replicate a “hon-
est” answer which is an increase in gain for the spammer and
a loss for the requester.

5. CONCLUSIONS AND FUTURE WORK

The crowdsoucing market is flourishing and it is strongly
based on financial incentives. Because of this, it may attract
more and more cheaters and thus give rise to novel cheating-
schemes. We could not find any hard evidence about the
amount of spam in crowdsourcing platforms. Anyhow, we
expect that adversarial approaches will become more ad-
vanced as the popularity of crowdsourcing raises.

In this paper we overviewed adversarial crowdsourcing
mechanisms and showed that many of current quality con-
trol mechanisms can fail naively in detecting well-organized
spammers. Based on the presented overview, we claim that
in the process of evaluating spam-filtering schemes, the usual

methodology applied—often based on self designed experiments—

is not adequate to real crowdsourcing environments where
organized groups of malicious workers are present.

Such reasons motivate the need for further studies in the
area of spam detection and quality control in crowdsourc-
ing platforms which will be the focus of our future work.
Specifically, there is the need for new benchmarks on which

to evaluate and compare existing and novel spam detection
techniques for crowdsourcing platforms. Moreover, a study
of how much this problem affects the quality of crowdsourced
tasks in a real-world large-scale setting is necessary. Exist-
ing research started to understand which tasks attract more
cheaters and which task features have to be controlled (e.g.,
high reward as well as simple task design attract more ma-
licious workers [7]). Therefore, the conclusion is that it is
better to discourage cheaters rather than invest resources
in a posteriori filtering. With respect to post-filtering, the
requester can use information like assignment time, submis-
sion time, feedback etc. to classify an answer as spam. Sys-
tems for worker analytics that help gather and share data in
real time about the tasks in progress and about workers may
help in identifying malicious behaviors [8]. Reward mecha-
nisms different than the financial one should be also taken
into account [11].

6. ACKNOWLEDGMENTS

This work was supported by the Swiss National Science
Foundation under grant number PP00P2_128459.

7. REFERENCES
[1] O. Alonso and R. A. Baeza-Yates. Design and

implementation of relevance assessments using
crowdsourcing. In ECIR, pages 153-164, 2011.

[2] O. Alonso and M. Lease. Crowdsourcing 101: putting
the wsdm of crowds to work for you. In WSDM, pages
1-2, 2011.

[3] O. Alonso and S. Mizzaro. Can we get rid of TREC
assessors? Using Mechanical Turk for relevance
assessment. In SIGIR 2009 Workshop on The Future
of IR FEvaluation, 2009.

[4] G. Demartini, D. E. Difallah, and P. Cudre-Mauroux.
ZenCrowd: Leveraging Probabilistic Reasoning and
Crowdsourcing Techniques for Large-Scale Entity
Linking. In WWW 2012, Lyon, France, 2012.

[5] P. Donmez, J. G. Carbonell, and J. Schneider. A
probabilistic framework to learn from multiple
annotators with time-varying accuracy. In SDM’10,
pages 826-837, 2010.

[6] J. S. Downs, M. B. Holbrook, S. Sheng, and L. F.
Cranor. Are your participants gaming the system?:
screening mechanical turk workers. In CHI, pages
2399-2402, New York, NY, USA, 2010. ACM.

[7] C. Eickhoff and A. P. de Vries. Increasing Cheat
Robustness Of Crowdsourcing Tasks. Information
Retrieval, 2012.

[8] P. Heymann and H. Garcia-Molina. Turkalytics:
analytics for human computation. In WWW, pages
477-486, New York, NY, USA, 2011. ACM.

[9] M. Hirth, T. HoBfeld, and P. Tran-Gia. Cost-Optimal
Validation Mechanisms and Cheat-Detection for
Crowdsourcing Platforms. In Workshop on Future
Internet and Next Generation Networks (FINGNet),
Seoul, Korea, June 2011.

[10] P. G. Ipeirotis, F. Provost, and J. Wang. Quality
management on amazon mechanical turk. In
Proceedings of the ACM SIGKDD Workshop on
Human Computation, HCOMP ’10, pages 64—67, New
York, NY, USA, 2010. ACM.

[11]

[12]

[13]

[14]

R. Jurca and B. Faltings. Mechanisms for making
crowds truthful. J. Artif. Int. Res., 34:209-253, March
20009.

A. Kittur, H. Chi, and B. Suh. Crowdsourcing user
studies with mechanical turk. In Proc. CHI 2008,
ACM Pres, pages 453-456, 2008.

J. Le, A. Edmonds, V. Hester, and L. Biewald.
Ensuring quality in crowdsourced search relevance
evaluation: The effects of training question
distribution. In SIGIR Workshop on Crowdsourcing
for Search Ewvaluation, pages 21-26, 2010.

A. D. Shaw, J. J. Horton, and D. L. Chen. Designing
incentives for inexpert human raters. In CSCW, pages
275-284, New York, NY, USA, 2011. ACM.

(15]

(16]

(17]

V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? improving data quality and data
mining using multiple, noisy labelers. In KDD, pages
614-622, New York, NY, USA, 2008. ACM.

R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng.
Cheap and fast—but is it good?: evaluating
non-expert annotations for natural language tasks. In
EMNL, pages 254-263, Stroudsburg, PA, USA, 2008.
Association for Computational Linguistics.

J. Whitehill, P. Ruvolo, T. fan Wu, J. Bergsma, and
J. Movellan. Whose Vote Should Count More:
Optimal Integration of Labels from Labelers of
Unknown Expertise. In NIPS, pages 2035-2043, 2009.

