
Exploiting Twitter as a Social Channel for
Human Computation

Ernesto Diaz-Aviles
diaz@L3S.de

Ricardo Kawase
kawase@L3S.de

Wolfgang Nejdl
nejdl@L3S.de

L3S Research Center / University of Hannover. Hannover, Germany

ABSTRACT
To fully leverage the innate problem solving capabilities of
humans necessitates paradigm shifts towards decentraliza-
tion of human computation systems, making the existence of
central authorities superfluous and even impossible. In this
position paper, we propose a novel decentralized architecture
that exploits the Twitter social network as a communication
channel for harnessing human computation. Our framework
provides individuals and organizations the necessary infras-
tructure for human computation, facilitating human task
submission, assignment and aggregation. We presented a
proof of concept and explore the feasibility of our approach
in the light of several use cases.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering ; K.4
[Computer and Society]: [General]

General Terms
Human Factors; Design

Keywords
Human Computation; Social Computer; Twitter

1. INTRODUCTION
Today’s most successful crowdsourcing services such as

Amazon’s Mechanical Turk1 and CrowdFlower2, share a com-
mon characteristic: they are all based on centralized archi-
tectures. In these services, both, users’ profile information
and task distribution engine are centralized.

However, the Social Computer vision that we share is
more likely to be based on decentralized architectures [6],
like the ones provided by social networks and mobile de-
vices, where humans would interact via free information ex-
change or trading to solve large-scale problems, that cannot
be easily addressed by conventional computer systems and
algorithms.

1Mechanical Turk: mturk.com
2CrowdFlower: crowdflower.com

CrowdSearch 2012 workshop at WWW 2012, Lyon, France.
Copyright is held by the author/owner(s).

Social networking sites such as Twitter3 have experienced
an explosion in global Internet traffic over the past years.
As of June 2011, it is estimated that the Twitter users sur-
passed 300 million, and they generate more than 200 million
of 140-character Twitter messages – tweets – every day [8,
9]. Interestingly enough, nearly two-thirds of active Twit-
ter users access the microblogging service using a mobile
phone [2].

The massive amount of mobile users plus the simplicity
of the interactions in Twitter, together with its scalability
and real-time message exchange, make this social network-
ing system an appealing environment to assign and collect
feedback for human computation tasks, which fits the nature
of a tweet: short and simple.

In this work we propose MechSwarm, a decentralized frame-
work for human computation built upon Twitter’s infras-
tructure. Our primary contributions can be summarized as
follows:

• We present the building blocks necessary for a decen-
tralized crowdsourcing architecture.

• We introduce simple yet powerful idioms for human-
intelligent-task assignment over the Twitter social net-
work, which can be considered as a protocol for human
computation over a transport layer.

• We present a conceptual design of our framework and
identify a number of use cases for human computation,
that can take advantage of the proposed approach.

The rest of this paper is structured as follows: Section 2
introduces the terminology and core concepts of the frame-
work, as well as, its components and workflow. In Section 3,
we present a conceptual design of our approach that shows
its feasibility. Section 4 introduces several Use Case sce-
narios and presents how human intelligence tasks can be
described using the MechSwarm Task Language. We discuss
current and future issues in Section 5. Section 6 presents
related work. In Section 7, we conclude the paper. Finally,
Appendix A, includes basic terminology used in Twitter as
a reference.

2. MECHSWARM FRAMEWORK
First, we introduce the key concepts of our proposed frame-

work MechSwarm. We borrow some terminology from Ama-
zon’s Mechanical Turk [1] and extend it in order to explain
our approach.

3Twitter: twitter.com

mturk.com
crowdflower.com
twitter.com


Human Intelligence Task (HIT):
A fine-grained task such as, “Is this a picture of the Golden
Gate Bridge?”or“In the video segment about sports or tech-
nology?”, which can be easily performed by humans and it
can be rendered as part of a Web-based user interface.

Contributor:
A human being who is willing and able to perform a HIT.
Each contributor has also a Twitter account that is used to
receive a HIT request and to reply with the solution. This
is equivalent to the concept of worker according to Ama-
zon’s Mechanical Turk terms, but we rather use the term
contributor instead, since is a more general concept, for ex-
ample, volunteers which do not expect a monetary payment
for performing a given HIT are also considered contributors.

Requesters:
The individuals or organizations that need a set of HITs to
be done. Each requester has a Twitter account that is used
to send HITs requests and receive HITs’ responses.

HIT Assignment:
When a requester needs a particular HIT to be done, he uses
MechSwarm to assign it to a candidate contributor that will
perform the task.

More formally, we define a Human Computation system
(HCOMP-system) as a triple (T,H,A), where

• T is called problem and corresponds to a set of Human
Intelligence Tasks (HITs),

• H is a set of human candidates to perform a task t
(i.e.,contributors), and

• A : T → H is a function that assigns each task t to a
human A(t) ∈ H.

The solution to the problem T is denoted by Solution(T ).
Note that this definition does not impose any restriction
on where the task submission, assignment, and completion
takes place.

MechSwarm provides (i) the selection of candidate con-
tributors H, (ii) a task assignment over this set (i.e., A) and
(iii) an aggregation mechanism to compute the final solution
of the problem, i.e., Solution(T ).

In the rest of this section we detail the different compo-
nents of the framework and the system workflow.

2.1 Components and Workflow
The MechSwarm Task Language, the Human Computation

Optimizer and the HIT-Solver are the fundamental compo-
nents of the framework. They are specified as follows:

MechSwarm Task Language. The language used to
specify the HITs and basic protocol for message ex-
change.

Human Computation Optimizer (HCO). The compo-
nent that manages the HIT requests, contributor selec-
tion and task assignment.

HIT-Solver. The component responsible to aggregate the
completed HITs and to compute a final solution.

Requester

HIT1.

2.

3.

4.

HIT
:

HIT Request

HIT
:

HIT Response
5.

HIT
:

HIT Response

HIT
:

HIT Request

HIT
solved 6.

Contributor

HIT
HIT
HIT

Problem

HIT
solvedHIT

solvedHIT
solved Solution

Human Computation 
Optimizer HIT-Solver

MechSwarm

Figure 1: MechSwarm Components and Workflow.
(1) A requester defines a problem (i.e., the set of
HITs T ). Each HIT is defined using the MechSwarm
task language. (2) The requester submits the HITs
to the Human Computation Optimizer (HCO). The
HCO identifies for each HIT a contributor from the
requester’s Twitter Social Graph (i.e., from his fol-
lowers), and assigns him the HIT. (3) The HCO uses
the Twitter social network to route the HIT request
to the contributor. (4) The contributor receives the
HIT, completes the assignment and issues a HIT
response to the requester. (5) The HIT-Solver com-
ponent collects the HIT responses to the specified
problem on behalf of the requester, and (6) com-
putes the problem’s final solution, i.e., Solution(T).

The basic workflow of the system is shown in Figure 1. A
requester begins by defining a problem (i.e., T ) that can be
split into several HITs easily tackled by humans. The HITs
are expressed using the MechSwarm’s task language. The
requester submits the problem to the Human Computation
Optimizer, which selects a set of contributors as candidates
to solve the HITs (i.e., H), and assigns to each of them a
task to perform (i.e., A).

Each contributor completes the HIT assigned and sends
back a response with the solution. The HIT-Solver collects
the set of HITs completed and computes a final solution to
the problem, i.e., Solution(T ).



Function Character

Question ID start #

Question ID end ?

Parameter delimiter &

Parameter terminator !

Table 1: List of reserved characters of MechSwarm
Task Language to identify each part of the message.
These reserved characters are configurable by the
developer.

In Figure 1, we can observe that the HCP and HIT-Solver
components run on the requester’s infrastructure, and not
on a centralized system. As a consequence, requesters’ pro-
file information remains private and does not need to be
disclosed to third parties.

In the next section we present an instance on how to re-
alize these concepts.

3. CONCEPTUAL DESIGN
In this section we demonstrate the feasibility of the pro-

posed decentralized framework. We present and discuss how
each component can be realized.

3.1 MechSwarm Task Language
One crucial point in distributing tasks among many con-

tributors is to make sure that they are familiar with the cho-
sen language (i.e., protocol) to communicate with the frame-
work. If the communication channel and the communication
languages are not coordinated, any human computation is
in vain. To this end we propose a response formatting that
is short and simple to use, is familiar to Twitter users and
is customizable. The basic format is a tweet containing a
Twitter mention. to the framework, followed by the iden-
tification of a HIT, followed by the the choices from a list
of possible answers. For basic terminology used in Twitter,
please refer to Appendix A.

In Table 1 we list the predefined character delimiters used
in the MechSwarm Task Language. Note that the only char-
acter that is not customizable is the Twitter reserved symbol
(@), used for mentioning. In the end, a request and response
should be formatted as follows:

• Request Template:
@<Target Contributor><Question>#<QuestionID>?
<Choice1>&<Choice2>&. . . &<Choice n>!

• Response Template:
@<MechSwarm Framework>#<QuestionID>?
<Answer1>&<Answer2>&. . . &<Answer n> !

Please note that the list of choices in the request is op-
tional. Furthermore, observe that complex and massive task
definition require additional software tools, e.g., to select
from a database the set of questions to be asked in a ques-
tionnaire, but the basic idioms presented in this section can
even be input directly by the requesters.

The request and response length is restricted to 140 char-
acters, given the message limit imposed by Twitter. Con-
crete examples of HITs, specified using the MechSwarm Task
Language, can be found in Section 4.

3.2 Human Computation Optimizer (HCO)
The Human Computation Optimizer (HCO) is a core com-

ponent in charge of managing HIT requests, contributor se-
lection and task assignment. HCO exploits social proximity
to assign HITs to contributors belonging to the requester’s
social graph.

We are exploring more sophisticated methods for contrib-
utor selection and task assignments, in particular we want
to (i) automatically identify the nature and semantics of the
problem (e.g., HITs), and (ii) learn and keep a contributor
profile in order to optimize the task assignments according
the capabilities of each contributor.

3.3 HIT-Solver
We consider each HIT as part of a problem. The solution

of the problem does not only imply to solve each HIT, but
also to produce an aggregated result, or a meaningful com-
bination of the output produced by individual HITs. For
example, in order to translate into Spanish a text document
written in German, we could split the document into para-
graphs, and then create and assign a HIT to a contributor
requesting the translation of each of them. The final solu-
tion corresponds to the result of each HIT plus the ordering
of the translated paragraphs, with respect to the original
document.

The final step of computing the aggregated solution of a
problem is performed by the HIT-Solver.

4. USE CASES
We reserve this section to expose a list of use cases (UC),

encompassing several human computation tasks, that can be
effectively solved using our framework. We use the Twitter
account “MechSwarm” in our discussion below.

UC1: Pairwise Comparisons. The framework is pre-
pared to listen to all tweets that mention the account (@Mech-
Swarm) and, if required, to acknowledge the received re-
sponse. Additionally, HIT-Solver computes the final solu-
tion based on the HIT responses received. The framework
logs all responses received, in order not to processing them
more than once.

Request: “@Contributor
Which one is your favorite search engine?
#favSearch?Google&Yahoo!”

Response: “@MechSwarm #favSearch? Yahoo!”

UC2: Sound Verification. The framework can be used
to confirm results from unsupervised methods as automatic
tagging images, videos or sounds.

Request: “@Contributor
Is http:///example.com/sound.mp3 a bird?
#soundHIT?yes&no!”

Response: “@MechSwarm #soundHIT? yes!”



UC3: Image Tagging Additionally, yet another applica-
tion is to provide means for contributors to add correct hu-
man judged metadata to resources.

Request: “@Contributor Tag image
http://example.com/picture.png #tagImageHIT?”

Response: “@MechSwarm #tagImageHIT?
dog&animal&nature!”

UC4: Near Duplicate Detection For the task of video
duplicate detection, the contributors could access a simple
interface displaying two videos and two buttons (“yes” and
“no”). Once the contributor clicks on one of the buttons this
triggers his Twitter account to post the formatted message
understandable by the framework.

Request: “@Contributor Are these terms/videos the same?
http://example.com/V1V2/ #matchVideoHIT?yes&no!”

Response: “@MechSwarm #matchVideoHIT? yes!”.

UC5: Translation The requesters can post HITs that re-
quire sentences to be translated to a certain language.

Request: “@Contributor Translate to Portuguese:
Hello world #translateHIT?”

Response: “@MechSwarm #translateHIT? Ola’ Mundo!”.

5. DISCUSSION AND FUTURE WORK
Twitter aggregates millions of users that are intercon-

nected through follower/followee ties. The users interactions
in Twitter, using mobile devices, open the opportunity to
achieve large scale human computations, similar than the
ones performed in centralized crowdsourcing systems, with
the additional benefits of contributor’s social ties and real-
time information exchange.

Regarding the monetary motivation supported by crowd-
sourcing systems like Amazon Mechanical Turk, we think
that alternative decentralized trade spaces for human com-
putation are possible, where rewards and incentives to indi-
viduals do not necessarily involve a monetary payment for
their contributions. Clear examples exist of such spaces that
support our vision, Wikipedia, for instance, can be consid-
ered as a massive human computation task of knowledge
gathering, where the vast majority of contributors does not
receive money for their efforts, but are motivated by intrinsic
rewards that comes from work achieved itself [5]. The de-
centralized framework we discussed here is flexible enough
to also incorporate monetary rewards if it is required, but
the contract would be established directly by the requester
and contributors, without any intermediaries.

Our work opens the door to interesting future directions.
One interesting question is: how to exploit plurality for
error-resilient HIT solving? Additionally, one issue to be ex-
amined is how the public HIT responses from one contribu-
tor influences others. It is a reasonable assumption that any
suggestion or recommendation before the execution of a task
may bias its outcome, thus should be empirically verified.

We plan to deploy a live implementation of our framework.
We want to explore how can more complex tasks be solved
using the basic idioms we proposed, is it possible to achieve

the functionality provided by tools like TurKit [4] using our
framework?

In particular, we are interested in use case scenario UC1:
Pairwise Comparisons, which is at the core of learning to
rank and collaborative filtering algorithms, which can be
realized using a decentralized crowdsourcing workforce.

6. RELATED WORK
When talking about Human Computation, there are two

main concepts that come in mind: crowdsourcing and Games
With A Purpose (GWAP) [10]. Crowdsourcing is the act of
gathering together the solutions performed by large groups
of people over some specific task. Today the most prominent
human computation application for is Amazon Mechanical
Turk, a marketplace for crowdsourcing. Amazon Mechanical
Turk works as a platform to coordinate (humans) to perform
simple tasks that usually computers cannot, in exchange for
monetary rewards.

Games With A Purpose, or human computation games,
exploit the idea of having human players to compete in solv-
ing problems. Many domains have profit from the GWAP
approach, mostly annotation of images and music [12, 3] and
also collecting common sense facts [11, 7].

Another great example that exploits Human Computa-
tion is the reCAPTCHA project4, which provides a captcha
service that is primarily used to identify whether is a hu-
man accessing some online content, and at the same time,
collects the feedback to correct words in digitalized books
that optical character recognition (OCR) programs fail to
recognize with certainty.

First, like Amazon Mechanical Turk we propose a frame-
work that defines workflows and terminologies for modeling
human computational tasks. Second, from GWAPs we share
the motivational power embedded in games and social net-
works to leverage the distribution and completion of tasks.
Lastly, like reCAPTCHA, instead of forcing users to search
for tasks, we bring the tasks to the users, using the Twitter’s
nature of pushing notifications.

Like a crowdsourcing marketplace, our goal is to support
Human Computation, but we propose a decentralized ap-
proach based on Twitter’s architecture and social graph,
which is quite different from the aforementioned works.

7. CONCLUSION
In this paper, we introduced a decentralized human com-

putation framework, MechSwarm, that exploits Twitter’s so-
cial network to harness the problem solving power of human
intelligence.

The framework does not require a centralized system to
manage task submission, assignment, and completion, but
has the potential to empower individuals and organization
to distribute tasks across large number of human contribu-
tors over Twitter’s social graph. We presented a conceptual
design and explore the feasibility of our approach in the light
of several use cases.

We envision that decentralized architectures for human
computation will emerge as viable alternatives to well es-
tablished crowdsourcing services. Our approach is a small
step towards realizing this vision.

4reCAPTCHA: google.com/recaptcha

google.com/recaptcha


8. REFERENCES
[1] J. Barr and L. F. Cabrera. Ai gets a brain. Queue,

4:24–29, May 2006.

[2] Edison Research. Twitter usage in america: 2010.
http://www.edisonresearch.com/, 2010.

[3] E. Law, L. von Ahn, R. Dannenberg, and
M. Crawford. Tagatune: a game for music and sound
annotation. In Proceedings of the 8th International
Conference on Music Information Retrieval (ISMIR
2007), 2007.

[4] G. Little, L. B. Chilton, M. Goldman, and R. C.
Miller. Turkit: human computation algorithms on
mechanical turk. In Proceedings of the 23nd annual
ACM symposium on User interface software and
technology, UIST ’10, pages 57–66, New York, NY,
USA, 2010. ACM.

[5] M. Poppendieck. Unjust desserts? Better Software,
pages 33–47, July/August July/August 2004.

[6] D. Robertson and F. Giunchiglia. The social
computer: Combining machine and human
computation (DISI-10-036). Technical report,
University of Trento, 2010.

[7] P. Singh, T. Lin, E. T. Mueller, G. Lim, T. Perkins,
and W. L. Zhu. Open mind common sense: Knowledge
acquisition from the general public. In On the Move to
Meaningful Internet Systems, pages 1223–1237, 2002.

[8] C. Taylor. Social networking ‘utopia’ isn’t coming.
CNN Tech. http://goo.gl/emF5j, June 2011.

[9] @twittereng. 200 million tweets per day. Twitter Blog.
http://goo.gl/eybp0, June 2011.

[10] L. von Ahn. Games with a purpose. IEEE Computer,
39(6):92–94, 2006.

[11] L. von Ahn, M. Kedia, and M. Blum. Verbosity: a
game for collecting common-sense facts. In CHI’06,
pages 75–78, 2006.

[12] L. von Ahn, R. Liu, and M. Blum. Peekaboom: a
game for locating objects in images. In CHI’06, pages
55–64. ACM Press, 2006.

APPENDIX
Appendix A: Basic Twitter Terminology
• Tweet: A message posted via Twitter containing 140

characters or fewer.

• @: The @ sign is used to call out usernames in Tweets.

• Mention A mention is any Twitter update that con-
tains @username anywhere in the body of the Tweet.

• Follower: A follower is another Twitter user who fol-
lows a specific account.

• Followee: Reflects other Twitter users that a specific
account chose to follow.

• Lists: Curated groups of other Twitter users. Used
to tie specific individuals into a group on your Twitter
account.

• Reply: A Tweet posted in reply to another user’s mes-
sage, usually posted by clicking the “reply” button next
to their Tweet. Always begins with @username.

• Retweet: A Tweet by another user, forwarded by
someone else.

http://www.edisonresearch.com/
http://goo.gl/emF5j
http://goo.gl/eybp0

	1 Introduction
	2 MechSwarm Framework
	2.1 Components and Workflow

	3 Conceptual Design
	3.1 MechSwarm Task Language
	3.2 Human Computation Optimizer (HCO)
	3.3 HIT-Solver

	4 Use Cases
	5 Discussion and Future Work
	6 Related Work
	7 Conclusion
	8 References

